Yet the ecology of marine microbes, which are crucial for everything from absorbing carbon dioxide from the air to regulating the productivity of major fisheries, are only beginning to be understood. In a step to understanding this hidden world, University of Washington oceanographers have found that diatoms — the intricately patterned single-celled algae that exist throughout the world’s oceans — grow faster in the presence of bacteria that release a growth hormone known to benefit land plants. The study, published online 27 May 2015 in Nature, uses genetic and molecular tools to discover what controls marine ecosystems.
“These very small organisms are interacting with their environment, but they’re also interacting with other organisms,” said co-author Ginger Armbrust, a UW professor of oceanography. “In my mind, in order to understand how future ecosystems will work, we need to understand how these organisms that are the basis of the marine food web interact with one another.”
Armbrust’s research group has long studied diatoms, which are microscopic algae that carry out one fifth of the planet’s photosynthesis, more than all the terrestrial rainforests combined. Lab members began this project by looking at which bacteria were found in all samples of Pseudo-nitzschia multiseries, a common coastal diatom collected from five places throughout the northern Pacific and Atlantic Oceans. Next they cured the water samples of all bacteria living in the seawater, and found that the diatoms did not reproduce as well.
Read the full article at here.